Demand-Limiting Using Building Thermal Mass for Small Commercial Applications

March 26, 2007

Jim Braun – Purdue University

Steve Fredrickson – Southern California Edison

Ed Arens – University of California - Berkeley

Outline

- Overall Objectives and Organization
- Simulation Results for California
- Iowa Energy Center Testing
- Field Testing in Southern California
- Conclusions
- What's Next?

Small Commercial Buildings Research Objectives

- Determine potential for demand reduction and operating cost savings in small commercial buildings – simulation and field studies
- Evaluate comfort impacts and customer acceptance
- Develop general methods for determining zone temperature variations to limit peak demand for critical peak periods
- Develop "quick" demand-limiting assessment tools for end-users and utility program planners

Small Commercial Buildings

Organization

- Southern California Edison
 - Field site selection and implementation
 - Customer acceptance
- Purdue University
 - Control strategy development and evaluation
 - Simulation and field data analysis to evaluate demand limiting potential
 - Development of quick assessment tools
- University of California Berkeley
 - Occupant thermal comfort and satisfaction evaluations

Simulation Case Studies

- Prototypical small commercial buildings in California climates
- Critical events on days having the 10 highest AC power demands
- Demand-limiting from 2 6 pm on critical event days
- 20% oversizing of AC equipment
- Conventional and CPP rates for SCE and PG&E

Importance of Setpoint Trajectory

Small Office Located in CA Climate Zone 15

Demand-Limiting Savings Potential

Peak Power Reduction for Small Office using Exponential Setpoint Trajectory

Impact on AC Costs

AC Costs for Small Office with SCE CPP Rates (Exponential Setpoint Trajectory)

Conclusions

 Peak power reduction very sensitive to demand-limiting trajectory of zone temperatures

Very significant peak power reduction potential

 Current CPP rate structures may not provide appropriate incentives for encouraging customers to minimize peak demand

Field Demonstration

lowa Energy Center

- Well-instrumented test rooms (east, south, west, & internal)
- Representative of a small commercial building
- No "internal" thermal mass (only floor, roof, and walls)

Peak Load Reduction Tests

Peak Load Reduction

Impact of Setpoint Trajectory

Comfort Survey

6 am - 10 am

10 am - 2 pm

2 pm - 6 pm

Extrapolation of IEC Results

Control Strategies for Demand-Limiting Period

Precooling: 70 F from 9 am to 1 pm

Demand-Limiting: 1 - 6 pm,70 F to 78 F

Effect of Length for Precooling & DL

Conclusions

- Results consistent with simulation results for small commercial buildings
 - Peak load reduction very sensitive to demandlimiting trajectory of zone temperatures
 - 30% potential reduction in afternoon peak cooling load
- Tolerable impact on comfort in the range of 70 to 78 F (small number of occupants polled)
- Extrapolation of results to hot conditions using inverse model gave similar peak load reduction

Building-Specific Trajectories Method Development

 Objective to determine site-specific setpoint trajectories for demand limiting with minimal requirements for data collection and training

 Three methods were developed having different performance & data requirements

Demand-Limiting Methods

Semi-analytical methods (SA & ESA)

- Analytical setpoint trajectory equations derived from simplified models for dynamics and coupling of building thermal mass
- Uses load measurements for one or two days under conventional control for parameter estimation

Load weighted-averaging method (WA)

- Assumes locally linear relation between zone temperature and building cooling demand
- Uses load measurements for two or more days under different control strategies

Weighted Averaging (WA) Method

- Requires at least two test days
- Optimally weighted-averaging of two sets of load data
- Apply the weighted-averaging to the two setpoint trajectories
- Allows continuous updating of setpoint trajectory

Peak Load Reduction for IEC

Setpoint control method

Peak Load Reduction for Santa Rosa

PLR = Peak Load Ratio (Strategy/NS)

Conclusion

- WA method is recommended
 - Provides greatest peak load reduction
 - Very robust with respect to building type and weather used for training
 - Works well for building aggregates

Field Demonstration

SCE Small Building Selection Criteria

- Less than 15,000 Sq. Ft.
- Hot Climate Zone
- Wire-for-Wire change out for new pageable thermostats
- Within SCE service territory
- Motivated Owner
- Typical construction materials for buildings of this size and type
- Rooftop Packaged Units
- Single or Two Story
- Single Occupant

SCE Field Site

Site Selection Process

- SCE customers contacted through assigned SCE Account Executives and Managers
- Several sites investigated in Palm Desert, Temecula, and Redlands
- Site review removed two sites due incompatible thermostats

SCE Field Site

Palm Desert Bank

- Met all basic criteria
 - Very motivated and cooperative property manager
 - Small single tenant bank
 - Occupancy: 8 am 7 pm
 - On-peak period: 12 6 pm
 - 11 packaged rooftop units
- Monitoring of AC power consumption (15-minute averages), zone and ambient temperatures
- Polling stations for comfort monitoring

Test Schedule and Processing

- 1st Week of Testing (2006)
 - Baseline NS (Night-setup): 10/9, 10/10, 10/13
 - LR (Linear-rise): 10/11
 - SU (Step-up): 10/12
- Use 2 days from 1st week of testing and apply WA method to estimate optimal demand-limiting trajectory
- 2nd Week of Testing
 - Baseline NS (Night-setup): 10/23
 - DL (Demand-limiting): 10/24-10/27

Time

Time

7pm

6pm

7pm

On-peak

Temperature Setpoints

Setpoint temperature

85°F

6am

Occupied period

12pm

72°F

SU, LR, and DL Strategies

AC Power Comparisons – 1st Week

Very Similar Weather Days for Comparison (High ~ 90 F)

AC Power Comparisons – 2nd Week

Very Similar Weather Days for Comparison (High ~ 80 F)

Percent Peak Power Reduction

Palm Desert Testing Demand-Limiting Conclusions

- Results consistent with simulation and lowa Energy Center test results for small commercial buildings
 - -~30% AC power peak reduction
 - peak load reduction very sensitive to demand-limiting trajectory of zone temperatures

 WA method determines near-optimal setpoint trajectory for minimum demand

Occupant Comfort Polling

Example Comfort Comparisons

Sensation Plot for 10/17/2006

Sensation Plot for 10/26/2006

Example Comfort Comparisons

Comfort Conclusions

 Relatively small impact of demandlimiting strategy on comfort evaluations

- Would be better to separately poll bank customers and employees
 - Customers have very short exposure times
 - Employees are probably better indicators of comfort conditions

What's Next

- Additional testing in small commercial buildings
 - Demonstrate savings and comfort impacts with very hot conditions
 - Develop better understanding of range of acceptable zone temperatures for demandlimiting control